Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 808
Filtrar
1.
J Plant Physiol ; 296: 154240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603993

RESUMO

Vesicle transport plays important roles in plant tolerance against abiotic stresses. However, the contribution of a vesicle formation related protein CaSec16 (COPII coat assembly protein Sec16-like) in pepper tolerance to salt stress remains unclear. In this study, we report that the expression of CaSec16 was upregulated by salt stress. Compared to the control, the salt tolerance of pepper with CaSec16-silenced was compromised, which was shown by the corresponding phenotypes and physiological indexes, such as the death of growing point, the aggravated leaf wilting, the higher increment of relative electric leakage (REL), the lower content of total chlorophyll, the higher accumulation of dead cells, H2O2, malonaldehyde (MDA), and proline (Pro), and the inhibited induction of marker genes for salt-tolerance and vesicle transport. In contrast, the salt tolerance of pepper was enhanced by the transient overexpression of CaSec16. In addition, heterogeneously induced CaSec16 protein did not enhance the salt tolerance of Escherichia coli, an organism lacking the vesicle transport system. By yeast two-hybrid method, an ankyrin protein, CaANK2B, was identified as the interacting protein of CaSec16. The expression of CaANK2B showed a downward trend during the process of salt stress. Compared with the control, pepper plants with transient-overexpression of CaANK2B displayed increased salt tolerance, whereas those with CaANK2B-silenced exhibited reduced salt tolerance. Taken together, both the vesicle formation related protein CaSec16 and its interaction partner CaANK2B can improve the pepper tolerance to salt stress.


Assuntos
Anquirinas , Tolerância ao Sal , Tolerância ao Sal/genética , Anquirinas/genética , Anquirinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas
2.
Neuroscience ; 543: 90-100, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417540

RESUMO

Extracellular signal-regulated kinase (ERK) are serine/threonine-selective proteins and ERK1/2 can be phosphorylated in peripheral and central brain regions after cortical spreading depolarization (CSD) and calcitonin gene-related peptide; However, it remains unclear about whether and how ERK activity modulates CSD that correlates to migraine aura. Here, we determined the role of ERK in regulating CSD and explored the underlying mechanism involving transient receptor potential ankyrin 1 (TRPA1), a stress-sensing cation channel. CSD was recorded using intrinsic optical imaging in mouse brain slices, and electrophysiology in rats. Phosphorylated ERK (pERK1/2) and interleukin-1ß (IL-1ß) protein levels were detected using Western blot or enzyme-linked immunosorbent assay, respectively. IL-1ß mRNA level was detected using qPCR. The results showed that an ERK inhibitor, SCH77298, markedly prolonged CSD latency and reduced propagation rate in mouse brain slices. Corresponding to this, CSD induction increased levels of cytosolic pERK1/2 in ipsilateral cerebral cortices of rats, the elevation of which correlated to the level of IL-1ß mRNA. Mechanistic analysis showed that pre-treatment of an anti-TRPA1 antibody reduced the cytosolic pERK2 level but not pERK1 following CSD in cerebral cortices of rats and this level of pERK2 correlated with that of cerebral cortical IL-1ß protein. Furthermore, an ERK activator, AES16-2M, but not its scrambled control, reversed the prolonged CSD latency by a TRPA1 inhibitor, HC-030031, in mouse brain slices. These data revealed a crucial role of ERK activity in regulating CSD, and elevation of pERK and IL-1ß production induced by CSD is predominantly TRPA1 channel-dependent, thereby contributing to migraine pathogenesis.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Transtornos de Enxaqueca , Camundongos , Ratos , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Anquirinas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Córtex Cerebral/metabolismo , Transtornos de Enxaqueca/metabolismo , RNA Mensageiro/metabolismo
3.
Neuron ; 112(7): 1133-1149.e6, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38290518

RESUMO

Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Neocórtex , Animais , Camundongos , Anquirinas/genética , Anquirinas/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Dendritos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Neocórtex/metabolismo , Células Piramidais/fisiologia
4.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069343

RESUMO

Congenital defects of the erythrocyte membrane are common in northern Europe and all over the world. The resulting diseases, for example, hereditary spherocytosis (HS), are often underdiagnosed, partly due to their sometimes mild and asymptomatic courses. In addition to a broad clinical spectrum, this is also due to the occasionally complex diagnostics that are not available to every patient. To test whether next-generation sequencing (NGS) could replace time-consuming spherocytosis-specific functional tests, 22 consecutive patients with suspected red cell membranopathy underwent functional blood tests. We were able to identify the causative genetic defect in all patients with suspected HS who underwent genetic testing (n = 17). The sensitivity of the NGS approach, which tests five genes (ANK1 (gene product: ankyrin1), EPB42 (erythrocyte membrane protein band4.2), SLC4A1 (band3), SPTA1 (α-spectrin), and SPTB (ß-spectrin)), was 100% (95% confidence interval: 81.5-100.0%). The major advantage of genetic testing in the paediatric setting is the small amount of blood required (<200 µL), and compared to functional assays, sample stability is not an issue. The combination of medical history, basic laboratory parameters, and an NGS panel with five genes is sufficient for diagnosis in most cases. Only in rare cases, a more comprehensive functional screening is required.


Assuntos
Anquirinas , Esferocitose Hereditária , Humanos , Criança , Anquirinas/genética , Anquirinas/metabolismo , Mutação , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Espectrina/genética , Espectrina/metabolismo , Proteínas do Citoesqueleto/genética , Sequenciamento de Nucleotídeos em Larga Escala
5.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995686

RESUMO

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Anquirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Canais Iônicos/genética , Canais Iônicos/metabolismo , Imunidade Vegetal/genética
6.
Nat Commun ; 14(1): 6860, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891324

RESUMO

E-cadherin is an essential cell‒cell adhesion protein that mediates canonical cadherin-catenin complex formation in epithelial lateral membranes. Ankyrin-G (AnkG), a scaffold protein linking membrane proteins to the spectrin-based cytoskeleton, coordinates with E-cadherin to maintain epithelial cell polarity. However, the molecular mechanisms governing this complex formation and its relationships with the cadherin-catenin complex remain elusive. Here, we report that AnkG employs a promiscuous manner to encapsulate three discrete sites of E-cadherin by the same region, a dynamic mechanism that is distinct from the canonical 1:1 molar ratio previously described for other AnkG or E-cadherin-mediated complexes. Moreover, we demonstrate that AnkG-binding-deficient E-cadherin exhibited defective accumulation at the lateral membranes and show that disruption of interactions resulted in cell polarity malfunction. Finally, we demonstrate that E-cadherin is capable of simultaneously anchoring to AnkG and ß-catenin, providing mechanistic insights into the functional orchestration of the ankyrin-spectrin complex with the cadherin-catenin complex. Collectively, our results show that complex formation between E-cadherin and AnkG is dynamic, which enables the maintenance of epithelial cell polarity by ensuring faithful targeting of the adhesion molecule-scaffold protein complex, thus providing molecular mechanisms for essential E-cadherin-mediated complex assembly at cell‒cell junctions.


Assuntos
Anquirinas , Polaridade Celular , Anquirinas/metabolismo , Caderinas/metabolismo , Adesão Celular , Células Epiteliais/metabolismo , Espectrina/metabolismo , Humanos
7.
mBio ; 14(5): e0165523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37795993

RESUMO

IMPORTANCE: Legionella pneumophila is an intracellular bacterium responsible of Legionnaires' disease, a severe pneumonia that is often fatal when not treated promptly. The pathogen's ability to efficiently colonize the host resides in its ability to replicate intracellularly. Essential for intracellular replication is translocation of many different protein effectors via a specialized secretion system. One of them, called RomA, binds and directly modifies the host chromatin at a unique site (tri-methylation of lysine 14 of histone H3 [H3K14me]). However, the molecular mechanisms of binding are not known. Here, we resolve this question through structural characterization of RomA together with the H3 peptide. We specifically reveal an active role of the ankyrin repeats located in its C-terminal in the interaction with the histone H3 tail. Indeed, without the ankyrin domains, RomA loses its ability to act as histone methyltransferase. These results discover the molecular mechanisms by which a bacterial histone methyltransferase that is conserved in L. pneumophila strains acts to modify chromatin.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Anquirinas/metabolismo , Histona Metiltransferases/metabolismo , Doença dos Legionários/microbiologia , Proteínas de Bactérias/metabolismo
8.
DNA Cell Biol ; 42(10): 617-637, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610843

RESUMO

Recent studies have shown that several members of the G-protein-coupled receptors (GPCR) superfamily play crucial roles in the maintenance of ion-water homeostasis of the sperm and Sertoli cells, development of the germ cells, formation of the blood barrier, and maturation of sperm. The GPCR, guanyl-nucleotide exchange factor, membrane traffic protein, and small GTPase genes were analyzed by microarray and bioinformatics (3513 sperm and Sertoli cell genes). In the microarray analyses of three human cases with different nonobstructive azoospermia sperm, the expression of GOLGA8IP, OR2AT4, PHKA1, A2M, OR56A1, SEMA3G, LRRC17, APP, ARHGAP33, RABGEF1, NPY2R, GHRHR, LTB4R2, GRIK5, OR6K6, NAPG, OR6C65, VPS35, FPR3, and ARL4A was upregulated, while expression of MARS, SIRPG, OGFR, GPR150, LRRK1, and NGEF was downregulated. There was an increase in GBP3, GBP3, TNF, TGFB3, and CLTC expression in the Sertoli cells of three human cases with NOA, whereas expression of PAQR4, RRAGD, RAC2, SERPINB8, IRPB1, MRGPRF, RASA2, SIRPG, RGS2, RAP2A, RAB2B, ARL17, SERINC4, XIAP, DENND4C, ANKRA2, CSTA, STX18, and SNAP23 were downregulated. A combined analysis of Enrich Shiny Gene Ontology (GO), STRING, and Cytoscape was used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP), regulation of protein metabolic process, regulation of small GTPase-mediated signal transduction were significantly expressed in up-/downregulated differentially expressed genes (DEGs) in sperm. In molecular function (MF) experiments of DEGs that were up-/downregulated, it was found that GPCR activity, guanyl ribonucleotide binding, GTPase activity and nucleoside-triphosphatase activity were overexpressed. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. When these gene mutations have been validated, they can be used to create new GPCR antagonists or agonists that are receptor-selective.


Assuntos
Azoospermia , Proteínas Monoméricas de Ligação ao GTP , Humanos , Masculino , Testículo/metabolismo , Azoospermia/genética , Azoospermia/metabolismo , Sêmen/metabolismo , Expressão Gênica , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de ras GTPase/genética , Anquirinas/genética , Anquirinas/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo
9.
Biol Pharm Bull ; 46(7): 939-945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394645

RESUMO

Transient receptor potential (TRP) channels play a significant role in taste perception. TRP ankyrin 1 (TRPA1) is present in the afferent sensory neurons and is activated by food-derived ingredients, such as Japanese horseradish, cinnamon, and garlic. The present study aimed to investigate the expression of TRPA1 in taste buds, and determine its functional roles in taste perception using TRPA1-deficient mice. In circumvallate papillae, TRPA1 immunoreactivity colocalised with P2X2 receptor-positive taste nerves but not with type II or III taste cell markers. Behavioural studies showed that TRPA1 deficiency significantly reduced sensitivity to sweet and umami tastes, but not to salty, bitter, and sour tastes, compared to that in wild-type animals. Furthermore, administration of the TRPA1 antagonist HC030031 significantly decreased taste preference to sucrose solution compared to that in the vehicle-treated group in the two-bottle preference tests. TRPA1 deficiency did not affect the structure of circumvallate papillae or the expression of type II or III taste cell and taste nerve markers. Adenosine 5'-O-(3-thio)triphosphate evoked inward currents did not differ between P2X2- and P2X2/TRPA1-expressing human embryonic kidney 293T cells. TRPA1-deficient mice had significantly decreased c-fos expression in the nucleus of the solitary tract in the brain stem following sucrose stimulation than wild-type mice. Taken together, the current study suggested that TRPA1 in the taste nerve contributes to the sense of sweet taste in mice.


Assuntos
Papilas Gustativas , Percepção Gustatória , Camundongos , Humanos , Animais , Paladar/fisiologia , Anquirinas/metabolismo , Papilas Gustativas/metabolismo , Sacarose
10.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511605

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective ion channel implicated in thermosensation and inflammatory pain. It has been reported that expression of the TRPA1 channel is induced by cigarette smoke extract. Acrolein found in cigarette smoke is highly toxic and known as an agonist of the TRPA1 channel. However, the role of TRPA1 in the cytotoxicity of acrolein remains unclear. Here, we investigated whether the TRPA1 channel is involved in the cytotoxicity of acrolein in human lung cancer A549 cells. The IC50 of acrolein in A549 cells was 25 µM, and acrolein toxicity increased in a concentration- and time-dependent manner. When the effect of acrolein on TRPA1 expression was examined, the expression of TRPA1 in A549 cells was increased by treatment with 50 µM acrolein for 24 h or 500 µM acrolein for 30 min. AP-1, a transcription factor, was activated in the cells treated with 50 µM acrolein for 24 h, while induction of NF-κB and HIF-1α was observed in the cells treated with 500 µM acrolein for 30 min. These results suggest that acrolein induces TRPA1 expression by activating these transcription factors. Overexpression of TRPA1 in A549 cells increased acrolein sensitivity and the level of protein-conjugated acrolein (PC-Acro), while knockdown of TRPA1 in A549 cells or treatment with a TRPA1 antagonist caused tolerance to acrolein. These findings suggest that acrolein induces the TRPA1 channel and that an increase in TRPA1 expression promotes the cytotoxicity of acrolein.


Assuntos
Neoplasias Pulmonares , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/genética , Acroleína/toxicidade , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Anquirinas/metabolismo , Proteínas do Citoesqueleto/metabolismo
11.
BMC Genomics ; 24(1): 304, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280519

RESUMO

BACKGROUND: Hereditary spherocytosis (HS) is a common inherited hemolytic anemia, caused by mutations in five genes that encode erythrocyte membrane skeleton proteins. The red blood cell (RBC) lifespan could directly reflect the degree of hemolysis. In the present cohort of 23 patients with HS, we performed next-generation sequencing (NGS) and Levitt's carbon monoxide (CO) breath test to investigate the potential genotype-degree of hemolysis correlation. RESULTS: In the present cohort, we identified 8 ANK1,9 SPTB,5 SLC4A1 and 1 SPTA1 mutations in 23 patients with HS, and the median RBC lifespan was 14(8-48) days. The median RBC lifespan of patients with ANK1, SPTB and SLC4A1 mutations was 13 (8-23), 13 (8-48) and 14 (12-39) days, respectively, with no statistically significant difference (P = 0.618). The median RBC lifespan of patients with missense, splice and nonsense/insertion/deletion mutations was 16.5 (8-48), 14 (11-40) and 13 (8-20) days, respectively, with no significant difference (P = 0.514). Similarly, we found no significant difference in the RBC lifespan of patients with mutations located in the spectrin-binding domain and the nonspectrin-binding domain [14 (8-18) vs. 12.5 (8-48) days, P = 0.959]. In terms of the composition of mutated genes, 25% of patients with mild hemolysis carried ANK1 or SPTA1 mutations, while 75% of patients with mild hemolysis carried SPTB or SLC4A1 mutations. In contrast, 46.7% of patients with severe hemolysis had ANK1 or SPTA1 mutations and 53.3% of patients with severe hemolysis had SPTB or SLC4A1 mutations. However, there was no statistically significant difference in the distribution of mutated genes between the two groups (P = 0.400). CONCLUSION: The present study is the first to investigate the potential association between genotype and degree of hemolysis in HS. The present findings indicated that there is no significant correlation between genotype and degree of hemolysis in HS.


Assuntos
Hemólise , Esferocitose Hereditária , Humanos , Anquirinas/genética , Anquirinas/metabolismo , Espectrina/genética , Espectrina/metabolismo , Esferocitose Hereditária/genética , Esferocitose Hereditária/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Mutação , Genótipo
12.
Eur J Med Chem ; 257: 115392, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269667

RESUMO

The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that senses irritant chemicals. Its activation is closely associated with pain, inflammation, and pruritus. TRPA1 antagonists are promising treatments for these diseases, and there has been a recent upsurge in their application to new areas such as cancer, asthma, and Alzheimer's disease. However, due to the generally disappointing performance of TRPA1 antagonists in clinical studies, scientists must pursue the development of antagonists with higher selectivity, metabolic stability, and solubility. Moreover, TRPA1 agonists provide a deeper understanding of activation mechanisms and aid in antagonist screening. Therefore, we summarize the TRPA1 antagonists and agonists developed in recent years, with a particular focus on structure-activity relationships (SARs) and pharmacological activity. In this perspective, we endeavor to keep abreast of cutting-edge ideas and provide inspiration for the development of more effective TRPA1-modulating drugs.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/metabolismo , Anquirinas/metabolismo , Proteínas do Citoesqueleto/metabolismo
13.
Cells ; 12(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174661

RESUMO

Moderate levels of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), fuel tumor metastasis and invasion in a variety of cancer types. Conversely, excessive ROS levels can impair tumor growth and metastasis by triggering cancer cell death. In order to cope with the oxidative stress imposed by the tumor microenvironment, malignant cells exploit a sophisticated network of antioxidant defense mechanisms. Targeting the antioxidant capacity of cancer cells or enhancing their sensitivity to ROS-dependent cell death represent a promising strategy for alternative anticancer treatments. Transient Receptor Potential Ankyrin 1 (TRPA1) is a redox-sensitive non-selective cation channel that mediates extracellular Ca2+ entry upon an increase in intracellular ROS levels. The ensuing increase in intracellular Ca2+ concentration can in turn engage a non-canonical antioxidant defense program or induce mitochondrial Ca2+ dysfunction and apoptotic cell death depending on the cancer type. Herein, we sought to describe the opposing effects of ROS-dependent TRPA1 activation on cancer cell fate and propose the pharmacological manipulation of TRPA1 as an alternative therapeutic strategy to enhance cancer cell sensitivity to oxidative stress.


Assuntos
Neoplasias , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Anquirinas/metabolismo , Antioxidantes/metabolismo , Canal de Cátion TRPA1/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Microambiente Tumoral
14.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37195288

RESUMO

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Assuntos
Segmento Inicial do Axônio , Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Segmento Inicial do Axônio/metabolismo , Anquirinas/genética , Anquirinas/metabolismo , Neurônios/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
15.
J Biol Chem ; 299(6): 104818, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182735

RESUMO

Encoded by ANK2, ankyrin-B (AnkB) is a multifunctional adapter protein critical for the expression and targeting of key cardiac ion channels, transporters, cytoskeletal-associated proteins, and signaling molecules. Mice deficient for AnkB expression are neonatal lethal, and mice heterozygous for AnkB expression display cardiac structural and electrical phenotypes. Human ANK2 loss-of-function variants are associated with diverse cardiac manifestations; however, human clinical 'AnkB syndrome' displays incomplete penetrance. To date, animal models for human arrhythmias have generally been knock-out or transgenic overexpression models and thus the direct impact of ANK2 variants on cardiac structure and function in vivo is not clearly defined. Here, we directly tested the relationship of a single human ANK2 disease-associated variant with cardiac phenotypes utilizing a novel in vivo animal model. At baseline, young AnkBp.E1458G+/+ mice lacked significant structural or electrical abnormalities. However, aged AnkBp.E1458G+/+ mice displayed both electrical and structural phenotypes at baseline including bradycardia and aberrant heart rate variability, structural remodeling, and fibrosis. Young and old AnkBp.E1458G+/+ mice displayed ventricular arrhythmias following acute (adrenergic) stress. In addition, young AnkBp.E1458G+/+ mice displayed structural remodeling following chronic (transverse aortic constriction) stress. Finally, AnkBp.E1458G+/+ myocytes harbored alterations in expression and/or localization of key AnkB-associated partners, consistent with the underlying disease mechanism. In summary, our findings illustrate the critical role of AnkB in in vivo cardiac function as well as the impact of single AnkB loss-of-function variants in vivo. However, our findings illustrate the contribution and in fact necessity of secondary factors (aging, adrenergic challenge, pressure-overload) to phenotype penetrance and severity.


Assuntos
Anquirinas , Miócitos Cardíacos , Animais , Humanos , Camundongos , Adrenérgicos/metabolismo , Anquirinas/metabolismo , Modelos Animais de Doenças , Canais Iônicos/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fenótipo , Envelhecimento/metabolismo
16.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175758

RESUMO

Grafting is widely used to improve the stress tolerance and the fruit yield of horticultural crops. Ribonucleoprotein complexes formed by mRNAs and proteins play critical roles in the communication between scions and stocks of grafted plants. In Pyrus betulaefolia, ankyrin was identified previously to promote the long-distance movement of the ribonucleoprotein complex(PbWoxT1-PbPTB3) by facilitating callose degradation at plasmodesmata. However, the mechanism of the ankyrin-mediated callose degradation remains elusive. In this study, we discovered a ß-1,3-glucanase (EC 3.2.1.39, PbPDBG) using ankyrin as a bait from plasmodesmata by co-immunoprecipitation and mass spectrometry. Ankyrin was required for the plasmodesmata-localization of PbPDBG. The grafting and bombardment experiments indicated that overexpressing PbPDBG resulted in decreased callose content at plasmodesmata, and thereby promoting the long-distance transport of the ribonucleoprotein complex. Altogether, our findings revealed that PbPDBG was the key factor in ankyrin-mediated callose degradation at plasmodesmata.


Assuntos
Plasmodesmos , Pyrus , Plasmodesmos/metabolismo , Pyrus/metabolismo , Anquirinas/metabolismo , Produtos Agrícolas/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
17.
Neuroscience ; 522: 121-131, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196978

RESUMO

Perinatal hypoxic-ischemic (HI) brain injury leads to mortality and morbidity in neonates and children. There are no effective and practical methods to attenuate this brain injury. This study determined whether desflurane, a volatile anesthetic with limited effect on the cardiovascular system, protected against HI-induced brain damage and the role of transient receptor potential ankyrin 1 (TRPA1), a mediator for simulated ischemia-induced myelin damage, in this protection. Seven-day-old male and female Sprague-Dawley rats had brain HI. They were exposed to 4.8%, 7.6% or 11.4% desflurane immediately or 4.8% desflurane at 0.5, 1 or 2 h after the HI. Brain tissue loss was evaluated 7 days later. Neurological functions and brain structures of rats with HI and 4.8% desflurane post-treatment were evaluated 4 weeks after the HI. TRPA1 expression was determined by Western blotting. HC-030031, a TRPA1 inhibitor, was used to determine the role of TRPA1 in the HI-induced brain injury. HI induced brain tissue and neuronal loss, which was attenuated by all tested concentrations of desflurane. Desflurane post-treatment also improved motor function, learning and memory in rats with brain HI. Brain HI increased the expression of TRPA1 and this increase was inhibited by desflurane. TRPA1 inhibition reduced HI-induced brain tissue loss and impairment of learning and memory. However, the combination of TRPA1 inhibition and desflurane post-treatment did not preserve brain tissues, learning and memory better than TRPA1 inhibition or desflurane post-treatment alone. Our results suggest that desflurane post-treatment induces neuroprotection against neonatal HI. This effect may be mediated by inhibiting TRPA1.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Gravidez , Ratos , Animais , Masculino , Feminino , Animais Recém-Nascidos , Ratos Sprague-Dawley , Anquirinas/metabolismo , Desflurano , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Proteínas do Citoesqueleto/metabolismo
18.
Mol Brain ; 16(1): 42, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37194019

RESUMO

Dysregulation of HDAC4 expression and/or nucleocytoplasmic shuttling results in impaired neuronal morphogenesis and long-term memory in Drosophila melanogaster. A recent genetic screen for genes that interact in the same molecular pathway as HDAC4 identified the cytoskeletal adapter Ankyrin2 (Ank2). Here we sought to investigate the role of Ank2 in neuronal morphogenesis, learning and memory. We found that Ank2 is expressed widely throughout the Drosophila brain where it localizes predominantly to axon tracts. Pan-neuronal knockdown of Ank2 in the mushroom body, a region critical for memory formation, resulted in defects in axon morphogenesis. Similarly, reduction of Ank2 in lobular plate tangential neurons of the optic lobe disrupted dendritic branching and arborization. Conditional knockdown of Ank2 in the mushroom body of adult Drosophila significantly impaired long-term memory (LTM) of courtship suppression, and its expression was essential in the γ neurons of the mushroom body for normal LTM. In summary, we provide the first characterization of the expression pattern of Ank2 in the adult Drosophila brain and demonstrate that Ank2 is critical for morphogenesis of the mushroom body and for the molecular processes required in the adult brain for the formation of long-term memories.


Assuntos
Anquirinas , Proteínas de Drosophila , Drosophila melanogaster , Animais , Anquirinas/metabolismo , Corte , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Memória de Longo Prazo/fisiologia , Morfogênese , Corpos Pedunculados/metabolismo , Neurônios/metabolismo
19.
J Biomed Sci ; 30(1): 28, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101198

RESUMO

BACKGROUND: Ingestion of alcoholic beverages is a known trigger of migraine attacks. However, whether and how ethanol exerts its pro-migraine action remains poorly known. Ethanol stimulates the transient receptor potential vanilloid 1 (TRPV1) channel, and its dehydrogenized metabolite, acetaldehyde, is a known TRP ankyrin 1 (TRPA1) agonist. METHODS: Periorbital mechanical allodynia following systemic ethanol and acetaldehyde was investigated in mice after TRPA1 and TRPV1 pharmacological antagonism and global genetic deletion. Mice with selective silencing of the receptor activated modifying protein 1 (RAMP1), a component of the calcitonin gene-related peptide (CGRP) receptor, in Schwann cells or TRPA1 in dorsal root ganglion (DRG) neurons or Schwann cells, were used after systemic ethanol and acetaldehyde. RESULTS: We show in mice that intragastric ethanol administration evokes a sustained periorbital mechanical allodynia that is attenuated by systemic or local alcohol dehydrogenase inhibition, and TRPA1, but not TRPV1, global deletion, thus indicating the implication of acetaldehyde. Systemic (intraperitoneal) acetaldehyde administration also evokes periorbital mechanical allodynia. Importantly, periorbital mechanical allodynia by both ethanol and acetaldehyde is abrogated by pretreatment with the CGRP receptor antagonist, olcegepant, and a selective silencing of RAMP1 in Schwann cells. Periorbital mechanical allodynia by ethanol and acetaldehyde is also attenuated by cyclic AMP, protein kinase A, and nitric oxide inhibition and pretreatment with an antioxidant. Moreover, selective genetic silencing of TRPA1 in Schwann cells or DRG neurons attenuated periorbital mechanical allodynia by ethanol or acetaldehyde. CONCLUSIONS: Results suggest that, in mice, periorbital mechanical allodynia, a response that mimics cutaneous allodynia reported during migraine attacks, is elicited by ethanol via the systemic production of acetaldehyde that, by releasing CGRP, engages the CGRP receptor in Schwann cells. The ensuing cascade of intracellular events results in a Schwann cell TRPA1-dependent oxidative stress generation that eventually targets neuronal TRPA1 to signal allodynia from the periorbital area.


Assuntos
Hiperalgesia , Transtornos de Enxaqueca , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Etanol/toxicidade , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Anquirinas/metabolismo , Acetaldeído , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Células de Schwann/metabolismo , Camundongos Endogâmicos C57BL
20.
Cells ; 12(5)2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36899880

RESUMO

Our previous studies demonstrated that enzymatic removal of highly sulfated heparan sulfates with heparinase 1 impaired axonal excitability and reduced expression of ankyrin G at the axon initial segments in the CA1 region of the hippocampus ex vivo, impaired context discrimination in vivo, and increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity in vitro. Here, we show that in vivo delivery of heparinase 1 in the CA1 region of the hippocampus elevated autophosphorylation of CaMKII 24 h after injection in mice. Patch clamp recording in CA1 neurons revealed no significant heparinase effects on the amplitude or frequency of miniature excitatory and inhibitory postsynaptic currents, while the threshold for action potential generation was increased and fewer spikes were generated in response to current injection. Delivery of heparinase on the next day after contextual fear conditioning induced context overgeneralization 24 h after injection. Co-administration of heparinase with the CaMKII inhibitor (autocamtide-2-related inhibitory peptide) rescued neuronal excitability and expression of ankyrin G at the axon initial segment. It also restored context discrimination, suggesting the key role of CaMKII in neuronal signaling downstream of heparan sulfate proteoglycans and highlighting a link between impaired CA1 pyramidal cell excitability and context generalization during recall of contextual memories.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Heparitina Sulfato , Animais , Camundongos , Anquirinas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Heparina Liase/metabolismo , Heparina Liase/farmacologia , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...